Җәүдәт Ильясов (математик)

Ильясов Җәүдәт Шәүкәт улы (10 февраль 1959) — башкорт галиме, математик, физика‑математика фәннәре докторы (2000), профессор.

Җәүдәт Ильясов
Туган 10 февраль 1959(1959-02-10) (61 яшь)
Учалы районы, Башкорт Айрат Сәвит Сатсиялислар Җөмһүрияте, РСФСР, СССР
Әлма-матер Мәскәү дәүләт үнивирситите
Һөнәре матиматик
Эш бирүче Башкорт дәүләт университеты
Гыйльми дәрәҗә: физика-математика фәннәре докторы[d]

БиографиясеҮзгәртү

Җәүдәт Шәүкәт улы Ильясов 1959 елның 10 февралендә Башкорт АССРының Учалы районы Миндәк авылынды туган.

1981 елда Мәскәү дәүләт университетының тәмамлаганнан соң дәррәү аспирантурада (1981-1984). Ары 2007 елга кадәр (өзеклекләр белән) Башкорт дәүләт университетында, 1996-1998 елларда В. А. Стеклов исемендәге Математика институтында эшли, бу вузның докторантурасына укый.

2002-2003 елларда Францияның Да-Рошель шәһәрендә укыта.

2007 елдан Русия елда ссср Фәннәр академиясенең Математика институтында бүлек мөдире.

Гыйльми эшчәнлегеҮзгәртү

Фәнни хезмәтләре сызыксыз дифференциаль тигезләмәләргә, вариациялы исәпләмәгә, стохастик процесларны тикшерүгә, санча ысулларга багышланган.

Җәүдәт Ильясов бифуркациядән табуның озак функционалның, катлауларга аерылу буенча сызыксыз спектраль анализның, стационар булмаган мәсьәләләрнең критик нокталарын ике яклы вариацияле исәпләү ысулларын уйлап таба; сызыксыз дифференциаль тигезләмәләр теориясенең ачык калган берничә проблемасын хәл итә.

60‑тан артык фәнни хезмәт авторы.

Гыйльми хезмәтләреҮзгәртү

  • Ильясов Я.Ш., “Исчисление бифуркаций методом продолженного функционала”, Функц. анализ и его прил., 41:1 (2007), 23–38 mathnet mathscinet zmath
  • Il'yasov Y., “A duality principle corresponding to the parabolic equations”, Physica D, 237:5 (2008), 692–698 crossref mathscinet adsnasa
  • Il'yasov Y., “On nonlocal existence results for elliptic equations with convex-concave nonlinearities”, Nonlinear Analysis, 61:1-2 (2005), 211–236 crossref mathscinet zmath
  • Il'yasov Y., Runst T., “On nonlocal calculation for inhomogeneous indefinite Neumann boundary value problems”, Calculus Var. & Part. Diff. Eq., 22:1 (2005), 101–127 crossref mathscinet zmath
  • Il'yasov Y., “On positive solutions of indefinite elliptic equations”, C. R. Acad. Sci. Paris Sér. I Math., 333:6 (2001), 533–538 crossref mathscinet zmath adsnasa