ITGA3 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[21][22]

ITGA3
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген Интегрин альфа-3[d][1]
Молекулярная функция связывание с ионом металла[d][2], protein domain specific binding[d][2], laminin binding[d][2], collagen binding[d][2], protease binding[d][3], protein heterodimerization activity[d][2][3], integrin binding[d][2], fibronectin binding[d][2] һәм связывание с белками плазмы[d][4][5][6][…]
Күзәнәк компоненты экзосома[d][7][8], синапс[2], часть мембраны[d][2], cell projection[d][2], периферия клетки[d][4], межклеточные контакты[d][2], Конус роста[d][2], мембрана[d][2], фокальные контакты[d][9], күзәнәк өслеге[d][10][11][12][…], receptor complex[d][13], synaptic membrane[d][10], perinuclear region of cytoplasm[d][2], excitatory synapse[d][10], integrin complex[d][14][2], basolateral plasma membrane[d][2], filopodium membrane[d][2][3], наружная сторона клеточной мембраны[d][2], integrin alpha3-beta1 complex[d][4][2][15], күзәнәк мембраны[d][2][2][2][…], фокальные контакты[d][16], күзәнәк өслеге[d][2][17][4][…], экзосома[d][18], growth cone filopodium[d][2], excitatory synapse[d][2][2] һәм synaptic membrane[d][2][2]
Биологический процесс positive regulation of neuron projection development[d][2], extracellular matrix organization[d][2], үпкәләр үсеше[d][19], mesodermal cell differentiation[d][20], развитие кожи[d][19], maternal process involved in female pregnancy[d][2], cell-matrix adhesion[d][14], negative regulation of cell projection organization[d][2], positive regulation of cell-substrate adhesion[d][2], йөрәк үсеше[d][2], dendritic spine maintenance[d][10], positive regulation of gene expression[d][2], нефрон үсеше[d][19], хәтер[2], integrin-mediated signaling pathway[d][2], response to gonadotropin[d][2], leukocyte migration[d][2], renal filtration[d][19], regulation of transforming growth factor beta receptor signaling pathway[d][19], regulation of Wnt signaling pathway[d][19], regulation of BMP signaling pathway[d][19], negative regulation of Rho protein signal transduction[d][10], exploration behavior[d][10], positive regulation of epithelial cell migration[d][2], neuron migration[d][2], агрегация клеток[d][2][2][2], positive regulation of protein localization to plasma membrane[d][3], negative regulation of Rho protein signal transduction[d][2][2], exploration behavior[d][2][2] һәм dendritic spine maintenance[d][2][2]
Изображение Gene Atlas

Искәрмәләр үзгәртү

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 GOA
  3. 3,0 3,1 3,2 3,3 G Ghersi, L Howard A novel protease-docking function of integrin at invadopodia // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1999. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.274.35.24947PMID:10455171
  4. 4,0 4,1 4,2 4,3 Yamada M., Sekiguchi K. Disease-associated single amino acid mutation in the calf-1 domain of integrin α3 leads to defects in its processing and cell surface expression // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2013. — ISSN 0006-291X; 1090-2104doi:10.1016/J.BBRC.2013.11.003PMID:24220332
  5. I Tachibana, J Bodorova, F Berditchevski et al. NAG-2, a novel transmembrane-4 superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1997. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.272.46.29181PMID:9360996
  6. Ravichandran K. S., Mazzocca A. Tetraspanin CD81 is linked to ERK/MAPKinase signaling by Shc in liver tumor cells // OncogeneNPG, 2004. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1207287PMID:14676841
  7. Farina A., Lane L., Lescuyer P. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine // Journal of ProteomicsElsevier BV, 2013. — ISSN 1874-3919; 0165-022Xdoi:10.1016/J.JPROT.2013.01.012PMID:23376485
  8. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  9. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  10. 10,0 10,1 10,2 10,3 10,4 10,5 GOA
  11. Garrigues H. J., DeMaster L. K., Rubinchikova Y. E. et al. KSHV attachment and entry are dependent on αVβ3 integrin localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate // VirologyElsevier BV, 2014. — ISSN 0042-6822; 1096-0341; 1089-862Xdoi:10.1016/J.VIROL.2014.06.035PMID:25063885
  12. Prockop D. J. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels // Cell and Tissue ResearchSpringer Science+Business Media, 2010. — ISSN 0302-766X; 1432-0878doi:10.1007/S00441-010-0994-4PMID:20563599
  13. Ghai R., Coulson E. J., Collins B. M. et al. Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2013. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1216229110PMID:23382219
  14. 14,0 14,1 Y Takada, E Murphy, P Pil et al. Molecular cloning and expression of the cDNA for alpha 3 subunit of human alpha 3 beta 1 (VLA-3), an integrin receptor for fibronectin, laminin, and collagen // J. Cell Biol. / J. NunnariRockefeller University Press, 1991. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.115.1.257PMID:1655803
  15. Garrigues H. J., DeMaster L. K., Rubinchikova Y. E. et al. KSHV attachment and entry are dependent on αVβ3 integrin localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate // VirologyElsevier BV, 2014. — ISSN 0042-6822; 1096-0341; 1089-862Xdoi:10.1016/J.VIROL.2014.06.035PMID:25063885
  16. Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol.NPG, 2011. — ISSN 1465-7392; 1476-4679doi:10.1038/NCB2216PMID:21423176
  17. Schaffer D. V. Characterization of integrin engagement during defined human embryonic stem cell culture // FASEB J.FASEB, 2010. — ISSN 0892-6638; 1530-6860doi:10.1096/FJ.08-126821PMID:19933311
  18. Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. BriggsAmerican Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450doi:10.1681/ASN.2008040406PMID:19056867
  19. 19,0 19,1 19,2 19,3 19,4 19,5 19,6 Pleniceanu O., Vivante A. A human integrin-α3 mutation confers major renal developmental defects // PLOS ONE / PLOS ONE EditorsPLoS, 2014. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0090879PMID:24621570
  20. Brafman D. A., C Phung, N Kumar et al. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions // Cell Death & DifferentiationNPG, 2013. — ISSN 1350-9047; 1476-5403doi:10.1038/CDD.2012.138PMID:23154389
  21. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  22. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар үзгәртү

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)