ADRB2 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[22][23]

ADRB2
Нинди таксонда бар акыллы кеше[d][1]
Кодирующий ген Бета-2 адренорецептор[d][1]
Молекулярная функция adenylate cyclase binding[d][2], adrenergic receptor activity[d][3], beta2-adrenergic receptor activity[d][3][3][4][…], enzyme binding[d][2], гомодимеризация белка[d][5], potassium channel regulator activity[d][6], связывание с белками плазмы[d][7][8][9][…], G protein-coupled receptor activity[d][2][2], signal transducer activity[d][3], norepinephrine binding[d][5], epinephrine binding[d][10], amyloid-beta binding[d][11], adrenergic receptor activity[d][2][10], beta2-adrenergic receptor activity[d][11][2][2][…] һәм protein-containing complex binding[d][11]
Күзәнәк компоненты мембрана[d][3][3]
Биологический процесс positive regulation of autophagosome maturation[d][12], adenylate cyclase-activating G protein-coupled receptor signaling pathway[d][2][2], regulation of sodium ion transport[d][2], endosome to lysosome transport[d][13], Рецепторно-опосредованный эндоцитоз[d][5], cell surface receptor signaling pathway[d][14], regulation of systemic arterial blood pressure by norepinephrine-epinephrine[d][2], negative regulation of smooth muscle contraction[d][2][10], regulation of smooth muscle contraction[d][2], adenylate cyclase-modulating G protein-coupled receptor signaling pathway[d][15], Костная резорбция[d][2], adenylate cyclase-activating adrenergic receptor signaling pathway[d][10], heat generation[d][2], desensitization of G protein-coupled receptor signaling pathway by arrestin[d][5], positive regulation of MAPK cascade[d][5], G protein-coupled receptor signaling pathway[d][3][3], positive regulation of bone mineralization[d][2], activation of adenylate cyclase activity[d][5], brown fat cell differentiation[d][2], activation of transmembrane receptor protein tyrosine kinase activity[d][16], positive regulation of protein ubiquitination[d][17], negative regulation of multicellular organism growth[d][2], передача сигнала между клетками[d][3], diet induced thermogenesis[d][2], norepinephrine-epinephrine-mediated vasodilation involved in regulation of systemic arterial blood pressure[d][2][10], positive regulation of lipophagy[d][12], response to cold[d][2], положительная регуляция транскрипции РНК полимеразой II промотор[d][2], передача сигнала[d][2], protein deubiquitination[d][2], membrane organization[d][2], adrenergic receptor signaling pathway[d][18], blood vessel diameter maintenance[d][2], G protein-coupled receptor signaling pathway[d][2][2][2], adenylate cyclase-modulating G protein-coupled receptor signaling pathway[d][19][10], positive regulation of protein kinase A signaling[d][11][2], positive regulation of mini excitatory postsynaptic potential[d][2], positive regulation of protein serine/threonine kinase activity[d][11], positive regulation of cold-induced thermogenesis[d][20][2], cellular response to amyloid-beta[d][11][2], response to psychosocial stress[d][11], positive regulation of cAMP-dependent protein kinase activity[d][11] һәм positive regulation of AMPA receptor activity[d][11]
Тәэсир итешә arformoterol[d][21], Фенотерол[d][21], Формотерол[d][21], indacaterol[d][21], mirabegron[d][21], olodaterol[d][21], Орципреналин[d][21], vilanterol[d][21], zinterol[d][21], адреналин[d][21], Изопреналин[d][21], Сальметерол[d][21], Добутамин[d][21], (−)-эфедрин[d][21], Пиндолол[d][21], сальбутамол[d][21], Тербуталин[d][21], Алпренолол[d][21], Атенолол[d][21], Бетаксолол[d][21], bupranolol[d][21], carazolol[d][21], Карведилол[d][21], cicloprolol[d][21], Лабеталол[d][21], levobetaxolol[d][21], levobunolol[d][21], Метопролол[d][21], Надолол[d][21], Пропафенон[d][21], Пропранолол[d][21], соталол[d][21] һәм sr-59230a free base[d][21]
Изображение Gene Atlas

ИскәрмәләрҮзгәртү

  1. 1,0 1,1 UniProt
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 UniProt-GOA
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 UniProt-GOA
  4. Bouvier M. Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2004. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M313310200PMID:15123695
  5. 5,0 5,1 5,2 5,3 5,4 5,5 Bouvier M. Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2004. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M313310200PMID:15123695
  6. Bouvier M. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2002. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M205035200PMID:12297500
  7. Berthouze M. The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization // EMBO J.NPG, 2009. — ISSN 0261-4189; 1460-2075doi:10.1038/EMBOJ.2009.128PMID:19424180
  8. Percherancier Y., Simpson J. C., Pepperkok R. et al. CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum // TrafficWiley-Blackwell, 2014. — ISSN 1398-9219; 1600-0854doi:10.1111/TRA.12148PMID:24405750
  9. Hall R. A., Premont R. T., Chow C. W. et al. The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange // Nature / M. SkipperNPG, Springer Science+Business Media, 1998. — ISSN 1476-4687; 0028-0836doi:10.1038/33458PMID:9560162
  10. 10,0 10,1 10,2 10,3 10,4 10,5 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  11. 11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 Wang D., G Govindaiah, Liu R. et al. Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity // FASEB J.FASEB, 2010. — ISSN 0892-6638; 1530-6860doi:10.1096/FJ.10-156661PMID:20395454
  12. 12,0 12,1 Lizaso A., Tan K., Lee Y. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation // AutophagyLandes Bioscience, Taylor & Francis, 2013. — ISSN 1554-8627; 1554-8635doi:10.4161/AUTO.24893PMID:23708524
  13. Gagnon A. W., L Kallal, Benovic J. L. Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-adrenergic receptor // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1998. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.273.12.6976PMID:9507004
  14. Kobilka B. K. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1992. — ISSN 0021-9258; 1083-351X; 1067-8816PMID:1371121
  15. Emorine L. J., S Marullo, C Delavier-Klutchko et al. Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization // Proc. Natl. Acad. Sci. U.S.A. / M. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1987. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.84.20.6995PMID:2823249
  16. Luttrell L. M. The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.275.13.9572PMID:10734107
  17. Baillie G., Houslay M. D. Mdm2 directs the ubiquitination of beta-arrestin-sequestered cAMP phosphodiesterase-4D5 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M109.008078PMID:19372219
  18. Puthenveedu M. A., Zastrow M. v. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2009. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M109.023366PMID:19710023
  19. Emorine L. J., S Marullo, C Delavier-Klutchko et al. Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization // Proc. Natl. Acad. Sci. U.S.A. / M. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1987. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.84.20.6995PMID:2823249
  20. Russell A. P. Beta(1)/beta(2)/beta(3)-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting // FEBS LettersElsevier BV, 2002. — ISSN 0014-5793; 1873-3468doi:10.1016/S0014-5793(02)03387-2PMID:12387862
  21. 21,00 21,01 21,02 21,03 21,04 21,05 21,06 21,07 21,08 21,09 21,10 21,11 21,12 21,13 21,14 21,15 21,16 21,17 21,18 21,19 21,20 21,21 21,22 21,23 21,24 21,25 21,26 21,27 21,28 21,29 21,30 21,31 21,32 IUPHAR/BPS Guide to PHARMACOLOGY
  22. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). 18 сентябрь, 2017 тикшерелде.
  23. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелде.

ЧыганакларҮзгәртү

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)