WAS (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[20][21]

WAS
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген белок синдрома Вискотта — Олдрича[d][1]
Молекуляр функция phospholipase binding[d][2], GTPase regulator activity[d][3], SH3 domain binding[d][4][2], связывание с белками плазмы[d][5][6][7][…], связывание похожих белков[d][8][7][9][…], actin binding[d][10], protein kinase binding[d][2], small GTPase binding[d][8][3] һәм actin filament binding[d][11]
Күзәнәк компоненты цитоплазма[10], cell-cell junction[d][10], vesicle membrane[d][10], actin cytoskeleton[d][3], экзосома[d][12], цитоскелет[d][10], цитозоль[d][10][3], микрофиламент[d][13], төш[10][14][15], микрофиламент[d][3][11], actin cortical patch[d][11], site of double-strand break[d][15], phagocytic vesicle[d][10] һәм экзосома[d][16]
Биологик процесс defense response[d][17], Fc-gamma receptor signaling pathway involved in phagocytosis[d][10], actin filament organization[d][10], negative regulation of cell motility[d][18], cвёртывание крови[d][17], positive regulation of Arp2/3 complex-mediated actin nucleation[d][10], actin filament-based movement[d][19], endosomal transport[d][10], actin filament polymerization[d][19], regulation of T cell antigen processing and presentation[d][18], иммун җавап[d][17], epidermis development[d][17], actin polymerization or depolymerization[d][3][10], T cell receptor signaling pathway[d][10], T cell activation[d][10], regulation of catalytic activity[d][10], Rho protein signal transduction[d][3], regulation of actin polymerization or depolymerization[d][3], regulation of lamellipodium assembly[d][3], Cdc42 protein signal transduction[d][3], regulation of stress fiber assembly[d][3], negative regulation of stress fiber assembly[d][3], actin cortical patch assembly[d][11], эндоцитоз[d][11], actin filament polymerization[d][10][15], actin filament-based movement[d][10][11], положительная регуляция транскрипции РНК полимеразой II промотор[d][14], positive regulation of actin nucleation[d][11], actin cortical patch localization[d][11], protein-containing complex assembly[d][3], cellular response to interferon-gamma[d][10], positive regulation of double-strand break repair via homologous recombination[d][15] һәм regulation of double-strand break repair via nonhomologous end joining[d][15]
Изображение Gene Atlas
 WAS Викиҗыентыкта

Искәрмәләр

үзгәртү
  1. 1,0 1,1 UniProt
  2. 2,0 2,1 2,2 Lovering R. C., Levinsky R. J. Evidence that the Wiskott-Aldrich syndrome protein may be involved in lymphoid cell signaling pathways // J. Immunol.Baltimore: 1996. — ISSN 0022-1767; 1550-6606PMID:8892607
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 3,12 M Symons, Derry J. M., B Karlak et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization // CellCell Press, Elsevier BV, 1996. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)81050-8PMID:8625410
  4. Zucconi A., Scita G., Disanza A. et al. Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis // PLOS GeneticsPLoS, 2009. — ISSN 1553-7390; 1553-7404doi:10.1371/JOURNAL.PGEN.1000675PMID:19798448
  5. Bayer P. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1998. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.273.29.18067PMID:9660763
  6. Quiles N. M., Geha R. S. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP // Mol. Cell. Biol.ASM, 2004. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.24.12.5269-5280.2004PMID:15169891
  7. 7,0 7,1 Cheng H., Skehan B. M., Campellone K. G. et al. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU // Nature / M. SkipperNPG, Springer Science+Business Media, 2008. — ISSN 1476-4687; 0028-0836doi:10.1038/NATURE07160PMID:18650809
  8. 8,0 8,1 Kim A. S., Kakalis L. T., N Abdul-Manan et al. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein // Nature / M. SkipperNPG, Springer Science+Business Media, 2000. — ISSN 1476-4687; 0028-0836doi:10.1038/35004513PMID:10724160
  9. Cramer R., Ridley A. J., Blanchoin L. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP // Mol. CellCell Press, Elsevier BV, 2003. — ISSN 1097-2765; 1097-4164doi:10.1016/S1097-2765(03)00172-2PMID:12769847
  10. 10,00 10,01 10,02 10,03 10,04 10,05 10,06 10,07 10,08 10,09 10,10 10,11 10,12 10,13 10,14 10,15 10,16 10,17 10,18 GOA
  11. 11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  12. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  13. M Symons, Derry J. M., B Karlak et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization // CellCell Press, Elsevier BV, 1996. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)81050-8PMID:8625410
  14. 14,0 14,1 Candotti F. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome // Sci. Transl. Med.AAAS, 2010. — ISSN 1946-6234; 1946-6242doi:10.1126/SCITRANSLMED.3000813PMID:20574068
  15. 15,0 15,1 15,2 15,3 15,4 Aparicio T. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair // Nature / M. SkipperNPG, Springer Science+Business Media, 2018. — 6 p. — ISSN 1476-4687; 0028-0836doi:10.1038/S41586-018-0237-5PMID:29925947
  16. Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell BiologyWiley, 2010. — ISSN 0818-9641; 1440-1711doi:10.1038/ICB.2010.64PMID:20458337
  17. 17,0 17,1 17,2 17,3 Derry J. M., Ochs H. D., U Francke Isolation of a novel gene mutated in Wiskott-Aldrich syndrome // CellCell Press, Elsevier BV, 1994. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(94)90528-2PMID:8069912
  18. 18,0 18,1 Valitutti S. Wiskott-Aldrich syndrome protein controls antigen-presenting cell-driven CD4+ T-cell motility by regulating adhesion to intercellular adhesion molecule-1 // ImmunologyWiley-Blackwell, 2012. — ISSN 0019-2805; 1365-2567doi:10.1111/J.1365-2567.2012.03620.XPMID:22804504
  19. 19,0 19,1 GOA
  20. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  21. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар

үзгәртү
  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)