MAPT (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[55][56]

MAPT
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген Тау-белок[d][1]
Молекуляр функция apolipoprotein binding[d][2], SH3 domain binding[d][3], tubulin binding[d][4], связывание с белками плазмы[d][5][6][7][…], lipoprotein particle binding[d][8], enzyme binding[d][9][10][11], ДНК-связывающий[d][12], actin binding[d][13][14][15], microtubule binding[d][16][12][17], dynactin binding[d][18], receptor ligand activity[d][16][19], protein phosphatase 2A binding[d][18], Hsp90 protein binding[d][12], ДНК-связывающий[d][15][4], minor groove of adenine-thymine-rich DNA binding[d][15], double-stranded DNA binding[d][15], single-stranded DNA binding[d][15], RNA binding[d][15], microtubule binding[d][18][20][15][…], enzyme binding[d][21][22][23][…], protein kinase binding[d][24][25], protein-macromolecule adaptor activity[d][15], phosphatidylinositol binding[d][15], связывание похожих белков[d][7][26][27], гомодимеризация белка[d][28], sequence-specific DNA binding[d][15], receptor ligand activity[d][29], chaperone binding[d][30], Hsp90 protein binding[d][31], histone-dependent DNA binding[d][15], microtubule lateral binding[d][32] һәм phosphatidylinositol bisphosphate binding[d][15]
Күзәнәк компоненты цитоплазма[12], cell body[d][33], cell projection[d][4], nuclear periphery[d][34], Конус роста[d][35], Нейрофибриллярный клубок[d][33], күзәнәк мембранасы[d][12][36][12], tubulin complex[d][35], дендрит[d][33], cytoplasmic ribonucleoprotein granule[d][37], цитоскелет[d][4], төш[12], цитозоль[d][12][12][12], микротрубочка[d][16][12], microtubule associated complex[d][12], мембрана[d][38][4], ядерные спеклы[d][4], аксон[d][16][12][39], somatodendritic compartment[d][40], soma[d][38], axon cytoplasm[d][4], күзәнәк тышындагы өлкә[d][15], внутренний компонент клетки[d][41][15], төш[15][4], цитоплазма[4][7][4][…], митохондрия[15], цитозоль[d][4][4][4][…], микротрубочка[d][4][4], күзәнәк мембранасы[d][15][4][42][…], microtubule cytoskeleton[d][18][15][43][…], аксон[d][15][18][4][…], дендрит[d][4][44][45], axolemma[d][46], somatodendritic compartment[d][15][38], neuron projection[d][47], дендритный шипик[d][15], cell body[d][4][45], main axon[d][4], липидный рафт[d][4], glial cell projection[d][4] һәм Нейрофибриллярный клубок[d][45][48]
Биологик процесс Lua хатасы: too many expensive function calls.
Изображение Gene Atlas

Искәрмәләр

үзгәртү
  1. 1,0 1,1 UniProt
  2. Roses A. D., Saunders A. M. ApoE3 binding to tau tandem repeat I is abolished by tau serine262 phosphorylation // Neurosci. Lett.Elsevier BV, 1995. — ISSN 0304-3940; 1872-7972doi:10.1016/0304-3940(95)11649-HPMID:7566652
  3. Lee G, ST N., DL G. et al. Tau interacts with src-family non-receptor tyrosine kinases // J. Cell Sci.The Company of Biologists, 1998. — ISSN 0021-9533; 1477-9137PMID:9763511
  4. 4,00 4,01 4,02 4,03 4,04 4,05 4,06 4,07 4,08 4,09 4,10 4,11 4,12 4,13 4,14 4,15 4,16 4,17 4,18 4,19 4,20 4,21 GOA
  5. A. Takashima, M. Murayama, O. Murayama et al. Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau, Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1998. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.95.16.9637PMID:9689133
  6. Geetha T. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation // J. Neurochem.Wiley-Blackwell, 2005. — ISSN 0022-3042; 1471-4159doi:10.1111/J.1471-4159.2005.03181.XPMID:15953362
  7. 7,0 7,1 7,2 Guerreiro P. S. LRRK2 Promotes Tau Accumulation, Aggregation and Release // Mol. Neurobiol.Springer Science+Business Media, 2015. — ISSN 0893-7648; 1559-1182doi:10.1007/S12035-015-9209-ZPMID:26014385
  8. M Pericak-Vance, Roses A. D., Saunders A. M. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1994. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.91.23.11183PMID:7972031
  9. Baulieu E., Dounane O. A role for FKBP52 in Tau protein function // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2010. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0914957107PMID:20133804
  10. Binder L. I. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2003. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1630428100PMID:12888622
  11. Brancolini C. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis // J. Neurosci. / M. PicciottoSociety for Neuroscience, 1998. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.18-18-07061.1998PMID:9736630
  12. 12,00 12,01 12,02 12,03 12,04 12,05 12,06 12,07 12,08 12,09 12,10 12,11 12,12 12,13 GOA
  13. Bodea L., Eckert A., Götz J. et al. Tau physiology and pathomechanisms in frontotemporal lobar degeneration // J. Neurochem.Wiley-Blackwell, 2016. — 24 p. — ISSN 0022-3042; 1471-4159doi:10.1111/JNC.13600PMID:27306859
  14. 14,0 14,1 14,2 Götz J. Tau promotes neurodegeneration via DRP1 mislocalization in vivo // Neuron / K. BroseCell Press, Elsevier BV, 2012. — ISSN 0896-6273; 1097-4199doi:10.1016/J.NEURON.2012.06.026PMID:22920254
  15. 15,00 15,01 15,02 15,03 15,04 15,05 15,06 15,07 15,08 15,09 15,10 15,11 15,12 15,13 15,14 15,15 15,16 15,17 15,18 15,19 15,20 Guo T., Noble W., Hanger D. P. Roles of tau protein in health and disease // Acta Neuropathol. (Berl)Springer Science+Business Media, 2017. — ISSN 0001-6322; 1432-0533doi:10.1007/S00401-017-1707-9PMID:28386764
  16. 16,0 16,1 16,2 16,3 16,4 Yu J., Tan L. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy // Mol. Neurobiol.Springer Science+Business Media, 2016. — ISSN 0893-7648; 1559-1182doi:10.1007/S12035-015-9415-8PMID:26363795
  17. Butner K. A., Kirschner M. W. Tau protein binds to microtubules through a flexible array of distributed weak sites // J. Cell Biol. / J. NunnariRockefeller University Press, 1991. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.115.3.717PMID:1918161
  18. 18,00 18,01 18,02 18,03 18,04 18,05 18,06 18,07 18,08 18,09 18,10 Yu J., Tan L. The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy // Mol. Neurobiol.Springer Science+Business Media, 2016. — ISSN 0893-7648; 1559-1182doi:10.1007/S12035-015-9415-8PMID:26363795
  19. Diaz-Hernandez M., María Teresa Miras Portugal Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells // Mol. Cell. Neurosci.Elsevier BV, 2007. — ISSN 1044-7431; 1095-9327doi:10.1016/J.MCN.2007.12.010PMID:18272392
  20. Atapour N., Hensch T. K., Hirokawa N. Defects in Synaptic Plasticity, Reduced NMDA-Receptor Transport, and Instability of Postsynaptic Density Proteins in Mice Lacking Microtubule-Associated Protein 1A // J. Neurosci. / M. PicciottoSociety for Neuroscience, 2015. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.2671-15.2015PMID:26609151
  21. Plattner F. Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M112.433326PMID:23362255
  22. Binder L. I. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2003. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.1630428100PMID:12888622
  23. Brancolini C. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis // J. Neurosci. / M. PicciottoSociety for Neuroscience, 1998. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.18-18-07061.1998PMID:9736630
  24. Ryoo S., Jeong H. K., Radnaabazar C. et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2007. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M707358200PMID:17906291
  25. Zweckstetter M., Mandelkow E., Blackledge M. Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. // Biochemistry / A. SchepartzACS, 2013. — ISSN 0006-2960; 1520-4995; 1943-295Xdoi:10.1021/BI401266NPMID:24251416
  26. O. Schweers, E. Schönbrunn-Hanebeck, A. Marx et al. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1994. — ISSN 0021-9258; 1083-351X; 1067-8816PMID:7929085
  27. Mandelkow E. Tau paired helical filaments from Alzheimer's disease brain and assembled in vitro are based on beta-structure in the core domain // Biochemistry / A. SchepartzACS, 2004. — ISSN 0006-2960; 1520-4995; 1943-295Xdoi:10.1021/BI0357006PMID:14769047
  28. Eliezer D., Barré P., Kobaslija M. et al. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation // Biochemistry / A. SchepartzACS, 2005. — ISSN 0006-2960; 1520-4995; 1943-295Xdoi:10.1021/BI048953NPMID:15654759
  29. Diaz-Hernandez M., María Teresa Miras Portugal Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells // Mol. Cell. Neurosci.Elsevier BV, 2007. — ISSN 1044-7431; 1095-9327doi:10.1016/J.MCN.2007.12.010PMID:18272392
  30. Zhou Y., Hayashi I., Wong J. et al. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease // PLOS ONE / PLOS ONE EditorsPLoS, 2014. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0103187PMID:25051234
  31. Chiosis G., Greengard P. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2007. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.0701055104PMID:17517623
  32. Mandelkow E., Hoenger A., Skiniotis G. Surface-decoration of microtubules by human tau // Journal of Molecular Biology / P. WrightElsevier BV, 2004. — ISSN 0022-2836; 1089-8638doi:10.1016/J.JMB.2004.04.008PMID:15147841
  33. 33,0 33,1 33,2 Cummings D. M., Muzammil A Nahaboo Solim, Moens T. G. et al. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology // Cell ReportsCell Press, Elsevier BV, 2015. — ISSN 2211-1247; 2639-1856doi:10.1016/J.CELREP.2014.12.041PMID:25620700
  34. Dinh K., Poindexter B. J., Barnes J. L. et al. Fluorescence microscopy and 3D image reconstruction of cytokine initiated disruption of the Parkinson disease associated proteins alpha-synuclein, tau and ubiquitin in cultured glial cells // CytokineElsevier BV, 2009. — ISSN 1043-4666; 1096-0023doi:10.1016/J.CYTO.2008.12.004PMID:19157893
  35. 35,0 35,1 Black M. M., T Slaughter, S Moshiach et al. Tau is enriched on dynamic microtubules in the distal region of growing axons // J. Neurosci. / M. PicciottoSociety for Neuroscience, 1996. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.16-11-03601.1996PMID:8642405
  36. Lee G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain // J. Cell Biol. / J. NunnariRockefeller University Press, 1995. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.131.5.1327PMID:8522593
  37. Villacé P., Marión R. M., Ortín J. The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs // Nucleic Acids Res.OUP, University of Oxford, 2004. — ISSN 0305-1048; 1362-4962; 1362-4954doi:10.1093/NAR/GKH552PMID:15121898
  38. 38,0 38,1 38,2 38,3 38,4 Ittner L. M., Ke Y. D., Delerue F. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models // CellCell Press, Elsevier BV, 2010. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2010.06.036PMID:20655099
  39. Black M. M., T Slaughter, S Moshiach et al. Tau is enriched on dynamic microtubules in the distal region of growing axons // J. Neurosci. / M. PicciottoSociety for Neuroscience, 1996. — ISSN 0270-6474; 1529-2401doi:10.1523/JNEUROSCI.16-11-03601.1996PMID:8642405
  40. Ittner L. M., Ke Y. D., Delerue F. et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models // CellCell Press, Elsevier BV, 2010. — ISSN 0092-8674; 1097-4172doi:10.1016/J.CELL.2010.06.036PMID:20655099
  41. Deaconescu A. M., Kutter S. Regulation of Microtubule Assembly by Tau and not by Pin1. // Journal of Molecular Biology / P. WrightElsevier BV, 2016. — ISSN 0022-2836; 1089-8638doi:10.1016/J.JMB.2016.03.010PMID:26996940
  42. 42,0 42,1 Lee G. Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain // J. Cell Biol. / J. NunnariRockefeller University Press, 1995. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.131.5.1327PMID:8522593
  43. Miller B. L., Seeley W. W. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment // Mol. Neurodegener.BMC, Springer Science+Business Media, 2016. — ISSN 1750-1326doi:10.1186/S13024-016-0109-0PMID:27356871
  44. Landegren U., Lund H., Gu G. J. et al. Role of individual MARK isoforms in phosphorylation of tau at Ser²⁶² in Alzheimer's disease // Neuromol. Med.Springer Science+Business Media, 2013. — ISSN 1535-1084; 1559-1174doi:10.1007/S12017-013-8232-3PMID:23666762
  45. 45,0 45,1 45,2 Cummings D. M., Muzammil A Nahaboo Solim, Moens T. G. et al. A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology // Cell ReportsCell Press, Elsevier BV, 2015. — ISSN 2211-1247; 2639-1856doi:10.1016/J.CELREP.2014.12.041PMID:25620700
  46. T Maas, J Eidenmüller, R Brandt Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2000. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.M000389200PMID:10747907
  47. Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  48. M. Goedert, Spillantini M. G., R. Jakes et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease // Neuron / K. BroseCell Press, Elsevier BV, 1989. — ISSN 0896-6273; 1097-4199doi:10.1016/0896-6273(89)90210-9PMID:2484340
  49. Elrick M. J. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis // Human Molecular GeneticsOUP, 2008. — ISSN 0964-6906; 1460-2083doi:10.1093/HMG/DDN423PMID:19074461
  50. 50,0 50,1 Weingarten M. D., Lockwood A. H., Hwo S. Y. et al. A protein factor essential for microtubule assembly // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1975. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.72.5.1858PMID:1057175
  51. Drechsel D. N., Hyman A. A., Cobb M. H. et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau // Mol. Biol. Cell,American Society for Cell Biology, 1992. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.3.10.1141PMID:1421571
  52. Mandelkow E., Mandelkow E., G Drewes et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262 // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1995. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.270.13.7679PMID:7706316
  53. A. Caceres, J. Mautino, Kosik K. S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation // Neuron / K. BroseCell Press, Elsevier BV, 1992. — ISSN 0896-6273; 1097-4199doi:10.1016/0896-6273(92)90025-9PMID:1389180
  54. Ludvigson A. E., Luebke J., Spires-Jones T. L. et al. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain // Am. J. Pathol.Elsevier BV, 2011. — ISSN 0002-9440; 1525-2191; 0097-3599doi:10.1016/J.AJPATH.2011.07.004PMID:21854751
  55. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  56. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар

үзгәртү
  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)