CD4 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[33][34]

CD4
Нинди таксонда бар H. sapiens[d][1]
Кодирующий ген CD4[d][1]
Молекулярная функция transmembrane signaling receptor activity[d][2], virus receptor activity[d][3], гомодимеризация белка[d][4][5], zinc ion binding[d][6], extracellular matrix structural constituent[d][4], enzyme binding[d][7], immunoglobulin binding[d][3], связывание с белками плазмы[d][7][8][9][…], coreceptor activity[d][10][11][3], interleukin-16 binding[d][12], interleukin-16 receptor activity[d][12], MHC class II protein binding[d][13][14][15][…], связывание похожих белков[d][5], protein tyrosine kinase binding[d][16][17], signaling receptor activity[d][18], protein kinase binding[d][19][3], signaling receptor binding[d][3], MHC class II protein binding[d][11][12][20][…] һәм protein tyrosine kinase binding[d][21][3][22]
Күзәнәк компоненты endoplasmic reticulum lumen[d][3], часть мембраны[d][3][3], early endosome[d][3], мембрана[d][3][3], поверхность клетки[d][3], endoplasmic reticulum membrane[d][3][3], Липидный рафт[d][17][23], T cell receptor complex[d][11], наружная сторона клеточной мембраны[d][17][24], күзәнәк мембраны[d][3][3][3][…], clathrin-coated vesicle membrane[d][3], часть клеточной мембраны[d][12], наружная сторона клеточной мембраны[d][3][25][22] һәм Липидный рафт[d][3][5][22]
Биологический процесс transmembrane receptor protein tyrosine kinase signaling pathway[d][11], defense response to Gram-negative bacterium[d][3], positive regulation of protein kinase activity[d][26], mitigation of host defenses by virus[d][3], positive regulation of calcium-mediated signaling[d][3], передача сигнала[d][27][2], helper T cell enhancement of adaptive immune response[d][3], T cell selection[d][28], response to estradiol[d][3], induction by virus of host cell-cell fusion[d][29], adaptive immune response[d][3], response to vitamin D[d][3], T cell differentiation[d][30], cell surface receptor signaling pathway[d][31][3], positive regulation of T cell proliferation[d][3], positive regulation of peptidyl-tyrosine phosphorylation[d][3], enzyme linked receptor protein signaling pathway[d][2], T cell activation[d][17], positive regulation of T cell activation[d][3], maintenance of protein location in cell[d][32], cytokine production[d][3], T cell receptor signaling pathway[d][3], immune system process[d][3], positive regulation of calcium ion transport into cytosol[d][3], regulation of T cell activation[d][30], иммунный ответ[d][11][3], Агрегация клеток[d][3], вирусный процесс[d][3], fusion of virus membrane with host plasma membrane[d][3], membrane organization[d][3], positive regulation of protein phosphorylation[d][12], positive regulation of kinase activity[d][12], interleukin-15-mediated signaling pathway[d][14], positive regulation of I-kappaB kinase/NF-kappaB signaling[d][12], positive regulation of MAPK cascade[d][12], positive regulation of monocyte differentiation[d][12], ДНК-зависимая позитивная регуляция транскрипции[d][12], positive regulation of viral entry into host cell[d][12], regulation of calcium ion transport[d][12], positive regulation of ERK1 and ERK2 cascade[d][14], cellular response to granulocyte macrophage colony-stimulating factor stimulus[d][12], cytokine-mediated signaling pathway[d][3], interleukin-15-mediated signaling pathway[d][12][22], T cell activation[d][3][22], positive regulation of ERK1 and ERK2 cascade[d][12][22] һәм macrophage differentiation[d][12]
Изображение Gene Atlas

Искәрмәләр үзгәртү

  1. 1,0 1,1 UniProt
  2. 2,0 2,1 2,2 Su S. B., W Gong, M Grimm et al. Inhibition of tyrosine kinase activation blocks the down-regulation of CXC chemokine receptor 4 by HIV-1 gp120 in CD4+ T cells // J. Immunol.Baltimore: 1999. — ISSN 0022-1767; 1550-6606PMID:10358157
  3. 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09 3,10 3,11 3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29 3,30 3,31 3,32 3,33 3,34 3,35 3,36 3,37 3,38 3,39 3,40 3,41 3,42 GOA
  4. 4,0 4,1 Cohen E. A. CD4 dimers constitute the functional component required for T cell activation // J. Immunol.Baltimore: 2002. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.169.11.6261PMID:12444132
  5. 5,0 5,1 5,2 Kwong P. D. Dimeric association and segmental variability in the structure of human CD4 // Nature / M. SkipperNPG, Springer Science+Business Media, 1997. — ISSN 1476-4687; 0028-0836doi:10.1038/387527A0PMID:9168119
  6. M Huse, Eck M. J., Harrison S. C. A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1998. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.273.30.18729PMID:9668045
  7. 7,0 7,1 Benichou S., Py B., Basmaciogullari S. et al. The phospholipid scramblases 1 and 4 are cellular receptors for the secretory leukocyte protease inhibitor and interact with CD4 at the plasma membrane // PLOS ONE / PLOS ONE EditorsPLoS, 2009. — ISSN 1932-6203doi:10.1371/JOURNAL.PONE.0005006PMID:19333378
  8. S Salghetti, R Mariani, J Skowronski Human immunodeficiency virus type 1 Nef and p56lck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1995. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.92.2.349PMID:7831289
  9. J Sodroski, R Wyatt, Kwong P. D. Energetics of the HIV gp120-CD4 binding reaction // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 2000. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.97.16.9026PMID:10922058
  10. M. Parmentier A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors // CellCell Press, Elsevier BV, 1996. — ISSN 0092-8674; 1097-4172doi:10.1016/S0092-8674(00)81314-8PMID:8674120
  11. 11,0 11,1 11,2 11,3 11,4 Miceli M. C., Parnes J. R. Role of CD4 and CD8 in T cell activation and differentiation // Advances in ImmunologyElsevier BV, 1993. — ISSN 0065-2776; 1557-8445doi:10.1016/S0065-2776(08)60498-8PMID:8512039
  12. 12,00 12,01 12,02 12,03 12,04 12,05 12,06 12,07 12,08 12,09 12,10 12,11 12,12 12,13 12,14 12,15 Zack J. A. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection // J. Virol.ASM, 2014. — ISSN 0022-538X; 1098-5514; 1070-6321doi:10.1128/JVI.00616-14PMID:24942581
  13. Miceli M. C., Parnes J. R. Role of CD4 and CD8 in T cell activation and differentiation // Advances in ImmunologyElsevier BV, 1993. — ISSN 0065-2776; 1557-8445doi:10.1016/S0065-2776(08)60498-8PMID:8512039
  14. 14,0 14,1 14,2 Zack J. A. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection // J. Virol.ASM, 2014. — ISSN 0022-538X; 1098-5514; 1070-6321doi:10.1128/JVI.00616-14PMID:24942581
  15. Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion // Nature / M. SkipperNPG, Springer Science+Business Media, 1987. — ISSN 1476-4687; 0028-0836doi:10.1038/330256A0PMID:2823150
  16. A. Veillette, Bookman M. A., Horak E. M. et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck // CellCell Press, Elsevier BV, 1988. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(88)90053-0PMID:3262426
  17. 17,0 17,1 17,2 17,3 GOA
  18. J Sodroski, R Wyatt, P Kwong Conformational changes of gp120 in epitopes near the CCR5 binding site are induced by CD4 and a CD4 miniprotein mimetic // Biochemistry / A. SchepartzACS, 1999. — ISSN 0006-2960; 1520-4995; 1943-295Xdoi:10.1021/BI990654OPMID:10413516
  19. Campbell K. S., A Buder, U Deuschle Interaction of p56lck with CD4 in the yeast two-hybrid system // Ann. New York Acad. Sci.New York: Wiley-Blackwell, 1995. — ISSN 0077-8923; 1749-6632doi:10.1111/J.1749-6632.1995.TB26652.XPMID:7486703
  20. Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion // Nature / M. SkipperNPG, Springer Science+Business Media, 1987. — ISSN 1476-4687; 0028-0836doi:10.1038/330256A0PMID:2823150
  21. A. Veillette, Bookman M. A., Horak E. M. et al. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck // CellCell Press, Elsevier BV, 1988. — ISSN 0092-8674; 1097-4172doi:10.1016/0092-8674(88)90053-0PMID:3262426
  22. 22,0 22,1 22,2 22,3 22,4 22,5 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform.OUP, 2011. — ISSN 1467-5463; 1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  23. Kwong P. D. Dimeric association and segmental variability in the structure of human CD4 // Nature / M. SkipperNPG, Springer Science+Business Media, 1997. — ISSN 1476-4687; 0028-0836doi:10.1038/387527A0PMID:9168119
  24. Wilson T. J., Presti R. M., Cella M. et al. FcRL6, a new ITIM-bearing receptor on cytolytic cells, is broadly expressed by lymphocytes following HIV-1 infection // BloodAmerican Society of Hematology, Elsevier BV, 2007. — ISSN 0006-4971; 1528-0020doi:10.1182/BLOOD-2006-06-030023PMID:17213291
  25. Wilson T. J., Presti R. M., Cella M. et al. FcRL6, a new ITIM-bearing receptor on cytolytic cells, is broadly expressed by lymphocytes following HIV-1 infection // BloodAmerican Society of Hematology, Elsevier BV, 2007. — ISSN 0006-4971; 1528-0020doi:10.1182/BLOOD-2006-06-030023PMID:17213291
  26. Luo K. X., Sefton B. M. Cross-linking of T-cell surface molecules CD4 and CD8 stimulates phosphorylation of the lck tyrosine protein kinase at the autophosphorylation site // Mol. Cell. Biol.ASM, 1990. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.10.10.5305PMID:2118992
  27. Fauci A. S., M Dybul, AS F. et al. Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry // J. Immunol.Baltimore: 1998. — ISSN 0022-1767; 1550-6606PMID:9558100
  28. Frank G. D., Parnes J. R. The level of CD4 surface protein influences T cell selection in the thymus // J. Immunol.Baltimore: 1998. — ISSN 0022-1767; 1550-6606PMID:9551897
  29. F Liao, G Alkhatib, Peden K. W. et al. STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1 // J. Exp. Med.Rockefeller University Press, 1997. — ISSN 0022-1007; 1540-9538doi:10.1084/JEM.185.11.2015PMID:9166430
  30. 30,0 30,1 Seong R. H., Chamberlain J. W., Parnes J. R. Signal for T-cell differentiation to a CD4 cell lineage is delivered by CD4 transmembrane region and/or cytoplasmic tail // Nature / M. SkipperNPG, Springer Science+Business Media, 1992. — ISSN 1476-4687; 0028-0836doi:10.1038/356718A0PMID:1533274
  31. FW R. HIV-1 envelope gp120 inhibits the monocyte response to chemokines through CD4 signal-dependent chemokine receptor down-regulation // J. Immunol.Baltimore: 1998. — ISSN 0022-1767; 1550-6606PMID:9780207
  32. Balamuth F., Brogdon J. L., Bottomly K. CD4 raft association and signaling regulate molecular clustering at the immunological synapse site // J. Immunol.Baltimore: 2004. — ISSN 0022-1767; 1550-6606doi:10.4049/JIMMUNOL.172.10.5887PMID:15128768
  33. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  34. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар үзгәртү

  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)