«Геометрия» битенең юрамалары арасында аерма

157 байт добавлено ,  2 ел элек
к
төзәтмә аңлатмасы юк
к
к
'''Гыйльме һәндәсә'''<ref>'''Һәндәсә''' ''ис.'' 1) Геометрия. 2) Инженерлык эше.
'''Гыйльме һәндәсә'''<ref>http://garap-farsy.narod.ru/h.htm</ref> яки '''Геоме́трия''' (tat. lat. ''[http://https.tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F Ğilme həndəsə]'', [[Гарәп теле|гарәп]]. ''علم الهندسة'', [[Борынгы юнан теле|бор. юнан]]. ''γῆ'' — җир һәм ''μετρέω'' үлчим) — [[Математика|риязият]] (математика) фәненең бер бүлеге, формаларны һәм гомумиләштерүләрне өйрәнә. Һәндәсә [[Математика|риязиятның]] башка бүлекләре белән тыгыз бәйләнгән, шуңа күрә аның чикләре тевәл билдәләнмәгән.[[Файл:Woman_teaching_geometry.jpg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Woman_teaching_geometry.jpg|мини|221x221пкс|Балаларны һәндәсәгә өйрәтүче хатын. [[XIV гасыр]] иллюстрациясы.]]<nowiki/>
Һәндәсә — иң элекке фәнләрнең бересе, килеп чыгышы бик бороннан килә, безнең заманга тиклем үк барып җитә. Геометрия сүзе [[юнан теле|юнан теленән]] тәрҗемә иткәндә «җир үлчәү» дигәнде аңлата. Мондый исемнең килеп чыгышы шулай аңлатыла: беренче геометрия үсеше төрле үлчәү эшләре белән башлана, җир үлчәүләр, юллар салу һәм төзелеш вактында үлчәүсез эшләве бик кыен, ә бу фән белән бу мәсьәләләр тиз чишелгән.
 
''сущ.'' 1) Геометрия. 2) Инженерное дело.
 
'''Гыйльме һәндәсә'''<ref>http://garap-farsy.narod.ru/h.htm</ref> яки '''Геоме́трия''' (tat. lat. ''[http://https.tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F '''Ğilme həndəsə''']'', [[Гарәп теле|гарәп]]. ''علم الهندسة'', [[Борынгы юнан теле|бор. юнан]]. ''γῆ'' — җир һәм ''μετρέω'' үлчим) — [[Математика|риязият]] (математика) фәненең бер бүлеге, формаларны һәм гомумиләштерүләрне өйрәнә. Һәндәсә [[Математика|риязиятның]] башка бүлекләре белән тыгыз бәйләнгән, шуңа күрә аның чикләре тевәл билдәләнмәгән.[[Файл:Woman_teaching_geometry.jpg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Woman_teaching_geometry.jpg|мини|221x221пкс|Балаларны һәндәсәгә өйрәтүче хатын. [[XIV гасыр]] иллюстрациясы.]]<nowiki/>
 
Һәндәсә — иң элекке фәнләрнең бересе, килеп чыгышы бик бороннан килә, безнең заманга тиклем үк барып җитә. Геометрия сүзе [[юнан теле|юнан теленән]] тәрҗемә иткәндә «җир үлчәү» дигәнде аңлата. Мондый исемнең килеп чыгышы шулай аңлатыла: беренче геометрия үсеше төрле үлчәү эшләре белән башлана, җир үлчәүләр, юллар салу һәм төзелеш вактында үлчәүсез эшләве бик кыен, ә бу фән белән бу мәсьәләләр тиз чишелгән.Һәндәсәгә кагылышлы белемнәр бик борынгы заманнан ук ([[Мисыр]], [[Бабил]]) Җир мәйданын, җисемнәрнең күләмен үлчәү, төзү, сугару һ.б. эшләр, астрономик күзәтүләр ихтыяҗы сөземтәсендә тупланып килгән. Борынгы [[Юнаннар|юнан]] галиме [[Евклид]][[Евклид|ның]] «Башлангычлар» ([[Юнан теле|юнан]]. ''Στοιχεῖα'', [[Латин теле|лат]]. ''Elementa'') исемле хезмәтендә беренче мәртәбә аксиомалар — һәндәсәнең төп кануннары тәгъбирләнгән, алар ярдәмендә иң гади фигураларның төрле үзлекләре исбатлап чыгарылган. [[Архимед]] (мәйдан һәм күләмнәрне тулыландырып исәпләү ысулы), Аполлоний (коник кисемнәр турасындагы тәгълимәт), [[Клавдий Птолемей|Птолемей]] (сферик һәндәсә) ачышлары да — һәндәсә өлкәһендәге мөһим казанышлар.
<nowiki/>[[Файл:Conic_Sections.svg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Conic_Sections.svg|уңда|мини|200x200пкс|Конус киселеше: [[түгәрәк]], [[эллипс]], [[парабола]], [[гипербола]]]]<nowiki/><nowiki/><nowiki/><nowiki/>
 
 
XVII гасырда [[Рене Декарт|Р. Декарт]] (1637) тарафынан төзелгән координаталар ысулы һәндәсә мәсьәләләрен сандар теленә күчерергә һәм аларны [[Алгебра|җәбери]] (алгебраик) ысуллар белән чишергә мөмкинлек бирә һәм яңа ачышларның — дифференциаль һәм интеграль исәпләүләрнең ([[Исаак Ньютон|И. Ньютон]] һәм [[Готфрид Лейбниц|Г. В. Лейбниц]]) нигезен тәшкил итә. XVIII гасырда евклидча фазалагы кәкреләрне һәм өчлекләрне өйрәнгәндә анализ ысуллары куллану барышында (бертуган [[Я. һәм И. Бернуллилар]], [[Г. Монж]], [[Леонард Эйлер|Л. Эйлер]] һ.б. хезмәтләрендә) классик дифференциаль һәндәсәгә нигез салына. IXX гасырда өчлекләр [[Теория|назариятындагы]] иң мөһим нәтиҗәләр алман [[Математик|риязый]] [[Карл Фридрих Гаусс|К. Ф. Гаусс]] исеме белән бәйле. Ул өчлекнең эчке һәндәсәте дигән, бүгелгәндә дә үзгәрмәүчән эчке үзлекләре җыелмасы төшенчәсен керетә (1827). Евклидча һәндәсәдән бөтенләй аермалы, логик каршылыксыз булган һәндәсә төзеп, [[Николай Лобачевский|Н. И. Лобачевский]] бу фәндең үсешендә принципиаль яңа азым ясый. IXX гасырда [[Николай Лобачевский|Лобачевский]] һәндәсәте барлыкка килү, шуннан соң башка һәндәсәләр төзелү математикала аксиомалар ысулын үстерүгә һәм камиллаштыруга этәргеч бирә ([[Гильберт|Д. Гильберт]] һ.б.). Алман [[Математик|риязый]] [[Клейнд|Ф. Клейнд]][[Клейнд|ың]] рәвеш үзгәртүләр төркөмнәре назарияты (теориясы) нигезендә нон-евклид һәндәсәләр классификациясын төзүве IXX гасырдагы зур казанышларның бересе булып санала. 1854 елда алман риязый [[Б. Риман]] нон-евклид һәндәсәләр кысаларына сыймаган фазалар төзи. Риман күп төрлелекләре һәм аларны гомумиләштерү буенча алып барылган тикшеренүләрдә «гомумиләштерелгән фәзалар» дип аталган төшенчә керетелә, ә аларны өйрәнү XX гасырда киң колач ала. Мәсәлән, [[Альберт Эйнштейн|А. Эйнштейн]], дүрт үлчәмле Риманча фаза-вакыт төшенчәсен кулланып (1916), чагыштырмалылыкның дөем назариятын төзи.
 
226

правок