«Геометрия» битенең юрамалары арасында аерма

209 байт добавлено ,  2 ел элек
к
төзәтмә аңлатмасы юк
к
к
'''Гыйльме һәндәсә'''<ref>http://garap-farsy.narod.ru/h.htm</ref> яки '''Геоме́трия''' ([[Гарәп теле|гарәп]]. ''علم الهندسة'', [[Борынгы юнан теле|бор. юнан]]. ''γῆ'' — җир һәм ''μετρέω'' үлчим) — [[Математика|риязият]] (математика) фәненең бер бүлеге, формаларны һәм гомумиләштерүләрне өйрәнә. Һәндәсә [[Математика|риязиятның]] башка бүлекләре белән тыгыз бәйләнгән, шуңа күрә аның чикләре тевәл билдәләнмәгән.[[Файл:Woman_teaching_geometry.jpg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Woman_teaching_geometry.jpg|мини|221x221пкс|Балаларны һәндәсәгә өйрәтүче хатын. [[XIV гасыр]] иллюстрациясы.]]<nowiki/>
Һәндәсә — иң элекке фәнләрнең бересе, килеп чыгышы бик бороннан килә, безнең заманга тиклем үк барып җитә. Геометрия сүзе [[юнан теле|юнан теленән]]<nowiki/>нән тәрҗемә иткәндә «җир үлчәү» дигәнде аңлата. Мондый исемнең килеп чыгышы шулай аңлатыла: беренче геометрия үсеше төрле үлчәү эшләре белән башлана, җир үлчәүләр, юллар салу һәм төзелеш вактында үлчәүсез эшләве бик кыен, ә бу фән белән бу мәсьәләләр тиз чишелгән.
 
Һәндәсәгә кагылышлы белемнәр бик борынгы заманнан ук ([[Мисыр]], [[Бабил]]) Җир мәйданын, җисемнәрнең күләмен үлчәү, төҙүтөзү, сугару һ.б. эшләр, астрономик күзәтүләр ихтыяҗы сөземтәсендә тупланып килгән. Борынгы [[Юнаннар|юнан]] галиме [[Евклид]]<nowiki/>ның «Башлангычлар» ([[Юнан теле|юнан]]. ''Στοιχεῖα'', [[Латин теле|лат]]. ''Elementa'') исемле хезмәтендә беренче мәртәбә аксиомалар — һәндәсәнең төп кануннары тәгъбирләнгән, алар ярдәмендә иң гади фигураларның төрле үзлекләре исбатлап чыгарылган. [[Архимед]] (мәйдан һәм күләмнәрне тулыландырып исәпләү ысулы), Аполлоний (коник кисемнәр турасындагы тәгълимәт), [[Клавдий Птолемей|Птолемей]] (сферик һәндәсә) ачышлары да — һәндәсә өлкәһендәге мөһим казанышлар.
Һәндәсә — иң элекке фәнләрнең бересе, килеп чыгышы бик бороннан килә, безнең заманга тиклем үк барып җитә. Геометрия сүзе [[юнан теле]]<nowiki/>нән тәрҗемә иткәндә «җир үлчәү» дигәнде аңлата. Мондый исемнең килеп чыгышы шулай аңлатыла: беренче геометрия үсеше төрле үлчәү эшләре белән башлана, җир үлчәүләр, юллар салу һәм төзелеш вактында үлчәүсез эшләве бик кыен, ә бу фән белән бу мәсьәләләр тиз чишелгән.
<nowiki/>[[Файл:Conic_Sections.svg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Conic_Sections.svg|уңда|мини|200x200пкс|Конус киселеше: [[Түгәрәк]], [[эллипс]], [[парабола]], [[гипербола]]]]<nowiki/><nowiki/><nowiki/><nowiki/>
 
 
XVII гасырда [[Рене Декарт|Р. Декарт]] (1637) тарафынан төзелгән координаталар ысулы һәндәсә мәсьәләләрен сандар теленә күчерергә һәм аларны [[Алгебра|җәбери]] (алгебраик) ысуллар белән чишергә мөмкинлек бирә һәм яңа ачышларның — дифференциаль һәм интеграль исәпләүләрнең ([[Исаак Ньютон|И. Ньютон]] һәм [[Готфрид Лейбниц|Г. В. Лейбниц]]) нигезен тәшкил итә. XVIII гасырда евклидча фазалагы кәкреләрне һәм өчлекләрне өйрәнгәндә анализ ысуллары куллану барышында (бертуган [[Я. һәм И. Бернуллилар]], [[Г. Монж]], [[Леонард Эйлер|Л. Эйлер]] һ.б. хезмәтләрендә) классик дифференциаль һәндәсәгә нигез салына. IXX гасырда өчлекләр [[Теория|назария]]<nowiki/>тындагы иң мөһим нәтиҗәләр алман [[МатематикаМатематик|риязиятриязиятчы]]<nowiki/>чы [[Карл Фридрих Гаусс|К. Ф. Гаусс]] исеме белән бәйле. Ул өчлекнең эчке һәндәсәте дигән, бүгелгәндә дә үзгәрмәүчән эчке үзлекләре җыелмасы төшенчәсен керетә (1827). Евклидча һәндәсәдән бөтенләй аермалы, логик каршылыксыз булган һәндәсә төзеп, [[Николай Лобачевский|Н. И. Лобачевский]] бу фәндең үсешендә принципиаль яңа азым ясый. IXX гасырда [[Николай Лобачевский|Лобачевский]] һәндәсәте барлыкка килү, шуннан соң башка һәндәсәләр төзелү математикала аксиомалар ысулын үстерүгә һәм камиллаштыруга этәргеч бирә ([[Гильберт|Д. Гильберт]] һ.б.). Алман [[Математик|риязиятриязиятчысы]]<nowiki/>чысы [[Клейнд|Ф. Клейнд]]<nowiki/>ың рәвеш үзгәртүләр төркөмнәре назарияты (теориясы) нигезендә нон-евклид һәндәсәләр классификациясын төзүве IXX гасырдагы зур казанышларның бересе булып санала. 1854 елда алман риязиятчы [[Б. Риман]] нон-евклид һәндәсәләр кысаларына сыймаган фазалар төзи. Риман күп төрлелекләре һәм аларны гомумиләштерү буенча алып барылган тикшеренүләрдә «гомумиләштерелгән фәзалар» дип аталган төшенчә керетелә, ә аларны өйрәнү XX гасырда киң колач ала. Мәсәлән, [[Альберт Эйнштейн|А. Эйнштейн]], дүрт үлчәмле Риманча фаза-вакыт төшенчәсен кулланып (1916), чагыштырмалылыкның дөем назариятын төзи.
 
IXX-XX гасырлар чигендә [[Математика|риязият]]<nowiki/>[[Математика|та]] абстракт карашларның үсеше һәндәсәне күплекләр назарияты нигеҙенә күчерүгә килтерә. Француз риязиятчысы [[Пуанкаре|А. Пуанкаре]]<nowiki/>ның күп төрлелекләрдә интеграль исәпләүләр, француз риязиятчысы [[М. Фреше]] белән алман риязиятчысы [[Хаусдорф|Ф. Хаусдорф]]<nowiki/>ның метрик күп төрлелекләр назариятына караган һәм Мәскәү риязиятчы мәктәбе вәкилдәренең ([[П. С. Александров]], [[П. С. Урысон]], [[А. Н. Колмогоров]], [[Л. С. Понтрягин]]) тикшеренү нәтиҗәләре һәндәсәнең яңа бүлеге — топология фәне барлыкка килүгә ярдәм итә, ә ул математиканың башка өлкәләре үсешенә дә зур йогынты ясый. XX гасырда дифференциаль һәндәсәдә ике юнәлеш билдәләнә. Беренче юнәлеш, математик анализ ысулдарын файдаланып, бирелгән нөктә тирәсендәге һәндәси объектларның локаль үзлекләрен өйрәнә һәм ул тикшерелә торган объектларны сызыкчалатырга, сызыклы [[Алгебра|җәбер]] (алгебра) ысулларын кулланырга мөмкинлек бирә. Шул юнәлешнең үсүве нәтиҗәсендә [[Риччи|К. Риччи]], [[Леви-Чивита|Т. Леви-Чивита]], [[Э. Картан]] һ.б. хезмәтләрендә тензорлы анализга, бәйләнгәнлек назариятына һәм ковариант дифференциаллауларга нигез салына. Икенче юнәлеш — дифференциаль топология — 1930 елдар уртасында [[Х. Уитни]] һәм [[Штифель|Э. Штифель]], [[Л. С. Понтрягин]], [[Ш. Чжень]] һ.б. хезмәтләрендә нигезләнә. Шыма күп төрлелекләрнең топологик инвариантларын, аларны сыйфатлаучы классларның [[Термин|истилахларын]] өйрәнгәндә гайәт зур нәтиҗәләргә ирешелә ([[В. А. Рохлин]], [[Д. У. Милнор]], [[М. Ф. Атья]] һ.б.). Гомүмән алганда, һәндәсә кәкреләр һәм өчлекләрнең төзелешен Евклид һәм нон-евклид фазаларында һәр яклап, шул исәптән аларның шыма түгеллеген һәм үзенчәлекле нөктәләре булуын да исәпкә алып өйрәнә ([[Н. В. Ефимов]], [[А. Д. Александров]], [[А. В. Погорелов]], [[Н. Кейпер]] һ.б.).
Һәндәсәгә кагылышлы белемнәр бик борынгы заманнан ук ([[Мисыр]], [[Бабил]]) Җир мәйданын, җисемнәрнең күләмен үлчәү, төҙү, сугару һ.б. эшләр, астрономик күзәтүләр ихтыяҗы сөземтәсендә тупланып килгән. Борынгы [[Юнаннар|юнан]] галиме [[Евклид]]<nowiki/>ның «Башлангычлар» ([[Юнан теле|юнан]]. ''Στοιχεῖα'', [[Латин теле|лат]]. ''Elementa'') исемле хезмәтендә беренче мәртәбә аксиомалар — һәндәсәнең төп кануннары тәгъбирләнгән, алар ярдәмендә иң гади фигураларның төрле үзлекләре исбатлап чыгарылган. [[Архимед]] (мәйдан һәм күләмнәрне тулыландырып исәпләү ысулы), Аполлоний (коник кисемнәр турасындагы тәгълимәт), [[Клавдий Птолемей|Птолемей]] (сферик һәндәсә) ачышлары да — һәндәсә өлкәһендәге мөһим казанышлар.
<nowiki/>[[Файл:Conic_Sections.svg|ссылка=https://ba.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Conic_Sections.svg|уңда|мини|200x200пкс|Конус киселеше: [[Түгәрәк]], [[эллипс]], [[парабола]], [[гипербола]]]]
 
 
XVII гасырда [[Рене Декарт|Р. Декарт]] (1637) тарафынан төзелгән координаталар ысулы һәндәсә мәсьәләләрен сандар теленә күчерергә һәм аларны [[Алгебра|җәбери]] (алгебраик) ысуллар белән чишергә мөмкинлек бирә һәм яңа ачышларның — дифференциаль һәм интеграль исәпләүләрнең ([[Исаак Ньютон|И. Ньютон]] һәм [[Готфрид Лейбниц|Г. В. Лейбниц]]) нигезен тәшкил итә. XVIII гасырда евклидча фазалагы кәкреләрне һәм өчлекләрне өйрәнгәндә анализ ысуллары куллану барышында (бертуган [[Я. һәм И. Бернуллилар]], [[Г. Монж]], [[Леонард Эйлер|Л. Эйлер]] һ.б. хезмәтләрендә) классик дифференциаль һәндәсәгә нигез салына. IXX гасырда өчлекләр [[Теория|назария]]<nowiki/>тындагы иң мөһим нәтиҗәләр алман [[Математика|риязият]]<nowiki/>чы [[Карл Фридрих Гаусс|К. Ф. Гаусс]] исеме белән бәйле. Ул өчлекнең эчке һәндәсәте дигән, бүгелгәндә дә үзгәрмәүчән эчке үзлекләре җыелмасы төшенчәсен керетә (1827). Евклидча һәндәсәдән бөтенләй аермалы, логик каршылыксыз булган һәндәсә төзеп, [[Николай Лобачевский|Н. И. Лобачевский]] бу фәндең үсешендә принципиаль яңа азым ясый. IXX гасырда [[Николай Лобачевский|Лобачевский]] һәндәсәте барлыкка килү, шуннан соң башка һәндәсәләр төзелү математикала аксиомалар ысулын үстерүгә һәм камиллаштыруга этәргеч бирә ([[Гильберт|Д. Гильберт]] һ.б.). Алман [[Математик|риязият]]<nowiki/>чысы [[Клейнд|Ф. Клейнд]]<nowiki/>ың рәвеш үзгәртүләр төркөмнәре назарияты (теориясы) нигезендә нон-евклид һәндәсәләр классификациясын төзүве IXX гасырдагы зур казанышларның бересе булып санала. 1854 елда алман риязиятчы [[Б. Риман]] нон-евклид һәндәсәләр кысаларына сыймаган фазалар төзи. Риман күп төрлелекләре һәм аларны гомумиләштерү буенча алып барылган тикшеренүләрдә «гомумиләштерелгән фәзалар» дип аталган төшенчә керетелә, ә аларны өйрәнү XX гасырда киң колач ала. Мәсәлән, [[Альберт Эйнштейн|А. Эйнштейн]], дүрт үлчәмле Риманча фаза-вакыт төшенчәсен кулланып (1916), чагыштырмалылыкның дөем назариятын төзи.
 
 
 
IXX-XX гасырлар чигендә [[Математика|риязият]]<nowiki/>та абстракт карашларның үсеше һәндәсәне күплекләр назарияты нигеҙенә күчерүгә килтерә. Француз риязиятчысы [[Пуанкаре|А. Пуанкаре]]<nowiki/>ның күп төрлелекләрдә интеграль исәпләүләр, француз риязиятчысы [[М. Фреше]] белән алман риязиятчысы [[Хаусдорф|Ф. Хаусдорф]]<nowiki/>ның метрик күп төрлелекләр назариятына караган һәм Мәскәү риязиятчы мәктәбе вәкилдәренең ([[П. С. Александров]], [[П. С. Урысон]], [[А. Н. Колмогоров]], [[Л. С. Понтрягин]]) тикшеренү нәтиҗәләре һәндәсәнең яңа бүлеге — топология фәне барлыкка килүгә ярдәм итә, ә ул математиканың башка өлкәләре үсешенә дә зур йогынты ясый. XX гасырда дифференциаль һәндәсәдә ике юнәлеш билдәләнә. Беренче юнәлеш, математик анализ ысулдарын файдаланып, бирелгән нөктә тирәсендәге һәндәси объектларның локаль үзлекләрен өйрәнә һәм ул тикшерелә торган объектларны сызыкчалатырга, сызыклы [[Алгебра|җәбер]] (алгебра) ысулларын кулланырга мөмкинлек бирә. Шул юнәлешнең үсүве нәтиҗәсендә [[Риччи|К. Риччи]], [[Леви-Чивита|Т. Леви-Чивита]], [[Э. Картан]] һ.б. хезмәтләрендә тензорлы анализга, бәйләнгәнлек назариятына һәм ковариант дифференциаллауларга нигез салына. Икенче юнәлеш — дифференциаль топология — 1930 елдар уртасында [[Х. Уитни]] һәм [[Штифель|Э. Штифель]], [[Л. С. Понтрягин]], [[Ш. Чжень]] һ.б. хезмәтләрендә нигезләнә. Шыма күп төрлелекләрнең топологик инвариантларын, аларны сыйфатлаучы классларның [[Термин|истилахларын]] өйрәнгәндә гайәт зур нәтиҗәләргә ирешелә ([[В. А. Рохлин]], [[Д. У. Милнор]], [[М. Ф. Атья]] һ.б.). Гомүмән алганда, һәндәсә кәкреләр һәм өчлекләрнең төзелешен Евклид һәм нон-евклид фазаларында һәр яклап, шул исәптән аларның шыма түгеллеген һәм үзенчәлекле нөктәләре булуын да исәпкә алып өйрәнә ([[Н. В. Ефимов]], [[А. Д. Александров]], [[А. В. Погорелов]], [[Н. Кейпер]] һ.б.).
 
== Әдәбиәт ==
 
== Шулай ук карагыз ==
*[[Физика|Гыйльме әшья]]
* [[]]
*[[Алгебра|Гыйльме җәбер]]
*[[Математика|Риязият]]
*[[Термин|Истилах]]
 
== Чыганаклар ==
226

правок